3,970 research outputs found

    The RICH counter of the AMS experiment

    Get PDF
    The RICH counter of the AMS experiment is described and its expected performances are discussed. Prototype results are reported.Comment: 5 pages, 7 figure

    Surface oscillations in channeled snow flows

    Full text link
    An experimental device has been built to measure velocity profiles and friction laws in channeled snow flows. The measurements show that the velocity depends linearly on the vertical position in the flow and that the friction coefficient is a first-order polynomial in velocity (u) and thickness (h) of the flow. In all flows, oscillations on the surface of the flow were observed throughout the channel and measured at the location of the probes. The experimental results are confronted with a shallow water approach. Using a Saint-Venant modeling, we show that the flow is effectively uniform in the streamwise direction at the measurement location. We show that the surface oscillations produced by the Archimedes's screw at the top of the channel persist throughout the whole length of the channel and are the source of the measured oscillations. This last result provides good validation of the description of such channeled snow flows by a Saint-Venant modeling

    Separation of foregrounds from cosmic microwave background observations with the MAP satellite

    Get PDF
    Simulated observations of a 10\dg \times 10\dg field by the Microwave Anisotropy Probe (MAP) are analysed in order to separate cosmic microwave background (CMB) emission from foreground contaminants and instrumental noise and thereby determine how accurately the CMB emission can be recovered. The simulations include emission from the CMB, the kinetic and thermal Sunyaev-Zel'dovich (SZ) effects from galaxy clusters, as well as Galactic dust, free-free and synchrotron. We find that, even in the presence of these contaminating foregrounds, the CMB map is reconstructed with an rms accuracy of about 20 ÎĽ\muK per 12.6 arcmin pixel, which represents a substantial improvement as compared to the individual temperature sensitivities of the raw data channels. We also find, for the single 10\dg \times 10\dg field, that the CMB power spectrum is accurately recovered for \ell \la 600.Comment: 7 pages, 7 figures, MNRAS submitte

    The Structure and Dynamical Evolution of Dark Matter Halos

    Get PDF
    (Shortened) We use N-body simulations to investigate the structure and dynamical evolution of dark matter halos in galaxy clusters. Our sample consists of nine massive halos from an EdS universe with scale free power spectrum and n = -1. Halos are resolved by ~20000 particles each, with a dynamical resolution of 20-25 kpc. Large scale tidal fields are included up to L=150 Mpc using background particles. The halo formation process can be characterized by the alternation of two dynamical configurations: a merging phase and a relaxation phase, defined by their signature on the evolution of the total mass and rms velocity. Halos spend on average one 1/3 of their evolution in the merging phase and 2/3 in the relaxation phase. Using this definition, we study the density profiles and their change during the halo history. The average density profiles are fitted by the NFW analytical model with an rms residual of 17% between the virial radius Rv and 0.01 Rv. The Hernquist (1990) profiles fits the same halos with an rms residual of 26%. The trend with mass of the scale radius of these fits is marginally consistent with that found by Cole & Lacey (1996): in comparison our halos are more centrally concentrated, and the relation between scale radius and halo mass is slightly steeper. We find a moderately large scatter in this relation, due both to dynamical evolution within halos and to fluctuations in the halo population. We analyze the dynamical equilibrium of our halos using the Jeans' equation, and find that on average they are approximately in equilibrium within their virial radius. Finally, we find that the projected mass profiles of our simulated halos are in very good agreement with the profiles of three rich galaxy clusters derived from strong and weak gravitational lensing observations.Comment: 20 pages, Latex, with all figures included. Modified to match the published versio

    Discovery of a large set of SNP and SSR genetic markers by high-throughput sequencing of pepper (Capsicum annuum)

    Get PDF
    Genetic markers based on single nucleotide polymorphisms (SNPs) are in increasing demand for genome mapping and fingerprinting of breeding populations in crop plants. Recent advances in high-throughput sequencing provide the opportunity for whole-genome resequencing and identification of allelic variants by mapping the reads to a reference genome. However, for many species, such as pepper (Capsicum annuum), a reference genome sequence is not yet available. To this end, we sequenced the C. annuum cv. "Yolo Wonder" transcriptome using Roche 454 pyrosequencing and assembled de novo 23,748 isotigs and 60,370 singletons. Mapping of 10,886,425 reads obtained by the Illumina GA II sequencing of C. annuum cv. "Criollo de Morclos 334" to the "Yolo Wonder" transcriptome allowed for SNP identification. By setting a threshold value that allows selecting reliable SNPs with minimal loss of information, 11,849 reliable SNPs spread across 5919 isotigs were identified. In addition, 853 single sequence repeats were obtained. This information has been made available online

    Spectral Orbits and Peak-to-Average Power Ratio of Boolean Functions with respect to the {I,H,N}^n Transform

    Full text link
    We enumerate the inequivalent self-dual additive codes over GF(4) of blocklength n, thereby extending the sequence A090899 in The On-Line Encyclopedia of Integer Sequences from n = 9 to n = 12. These codes have a well-known interpretation as quantum codes. They can also be represented by graphs, where a simple graph operation generates the orbits of equivalent codes. We highlight the regularity and structure of some graphs that correspond to codes with high distance. The codes can also be interpreted as quadratic Boolean functions, where inequivalence takes on a spectral meaning. In this context we define PAR_IHN, peak-to-average power ratio with respect to the {I,H,N}^n transform set. We prove that PAR_IHN of a Boolean function is equivalent to the the size of the maximum independent set over the associated orbit of graphs. Finally we propose a construction technique to generate Boolean functions with low PAR_IHN and algebraic degree higher than 2.Comment: Presented at Sequences and Their Applications, SETA'04, Seoul, South Korea, October 2004. 17 pages, 10 figure

    Ground-based follow up of IRAS galaxies

    Get PDF
    Optical, near infrared, radio continuum and HI observations were undertaken of the galaxies identified with IRAS sources in a few fields roughly of the size of a sky survey plate. Results are presented from two fields at galactic latitude +27 and +43 deg over a total area of 100 sq. deg. These regions contained 115 IRAS point sources, out of which 26 were identified with stars and 81 with faint galaxies, 10 of which were difficult to recognize on the Schmidt plates. Spectroscopy was obtained with the ESO telescopes at a resolution of about 10 A. The vast majority of galaxies have low excitation spectra dominated by low ionization lines. The spectra are typical of HII region type galaxies, however of much lower excitation that other starbursts galaxies. The importance of the reddening as determined from the H alpha/H beta ratio is stressed: the visual absorption A sub v ranges from 2 to 6 magnitudes and as a consequence the corrected L sub IR/L sub B ratios are considerably reduced if those reddenings apply to the whole galaxy

    All sky CMB map from cosmic strings integrated Sachs-Wolfe effect

    Full text link
    By actively distorting the Cosmic Microwave Background (CMB) over our past light cone, cosmic strings are unavoidable sources of non-Gaussianity. Developing optimal estimators able to disambiguate a string signal from the primordial type of non-Gaussianity requires calibration over synthetic full sky CMB maps, which till now had been numerically unachievable at the resolution of modern experiments. In this paper, we provide the first high resolution full sky CMB map of the temperature anisotropies induced by a network of cosmic strings since the recombination. The map has about 200 million sub-arcminute pixels in the healpix format which is the standard in use for CMB analyses (Nside=4096). This premiere required about 800,000 cpu hours; it has been generated by using a massively parallel ray tracing method piercing through a thousands of state of art Nambu-Goto cosmic string numerical simulations which pave the comoving volume between the observer and the last scattering surface. We explicitly show how this map corrects previous results derived in the flat sky approximation, while remaining completely compatible at the smallest scales.Comment: 8 pages, 4 figures, uses RevTeX. References added, matches published versio

    Algebraic Correlation Function and Anomalous Diffusion in the HMF model

    Get PDF
    In the quasi-stationary states of the Hamiltonian Mean-Field model, we numerically compute correlation functions of momenta and diffusion of angles with homogeneous initial conditions. This is an example, in a N-body Hamiltonian system, of anomalous transport properties characterized by non exponential relaxations and long-range temporal correlations. Kinetic theory predicts a striking transition between weak anomalous diffusion and strong anomalous diffusion. The numerical results are in excellent agreement with the quantitative predictions of the anomalous transport exponents. Noteworthy, also at statistical equilibrium, the system exhibits long-range temporal correlations: the correlation function is inversely proportional to time with a logarithmic correction instead of the usually expected exponential decay, leading to weak anomalous transport properties
    • …
    corecore